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bstract

P-glycoprotein (P-gp) is an ATP dependent efflux transporter protein that has been demonstrated to play a critical role in affecting the absorption,
etabolism, elimination and toxicity (ADMET) characteristics of a large number of marketed drugs. Therefore, it is important to evaluate whether

r not compounds of interest are likely to interact with P-gp and/or other efflux transporters. An in silico efflux substrate (potential substrate of P-gp
nd or other transporters) classification model has been developed based on in vitro bi-directional Caco-2 cell permeability and five descriptors,
sing 14 marketed drugs and >100 discovery compounds synthesized at Bristol-Myers Squibb PRI. The model suggests that efflux substrates tend
o contain electron deficient aromatic rings, are highly branched, and most contain tertiary nitrogen. This model demonstrated ∼80% predictability

f both non-substrates and substrates from a training set of 125 compounds. For a validation set of 46 compounds the predictability was ∼72%
or non-substrates and ∼89% for substrates. The model has the potential to be used both as a filter for library designs to identify potential efflux
ubstrates in early discovery as well as a primary screening methodology to identify the efflux substrate potential of drug candidates.

2007 Elsevier B.V. All rights reserved.
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. Introduction

Recent reports have put the final price tag for bringing a drug
o the market at a staggering US$ 1.7 billion dollars with an esti-

ated research time running into multiple years (FDA, 2004).
eeping in mind the tremendous amount of time, resources

nd money that goes into bringing new drugs to the market,
t is imperative for the pharmaceutical industry to constantly
ook for smarter ways of doing research. Some recent efforts
o reduce cost and expedite the drug discovery cycle include
ombinatorial chemistry, proteomics, genomics, robotics and
iniaturization. In addition to these technological advances,

ew drug design efforts incorporate a parallel approach to drug
iscovery where the pharmacological efficacy is screened in par-
llel to the initial ADMET profiling of compounds, providing

ore information for selecting compounds with superior qual-

ty for further development. One of the cornerstones of such
n approach, however, is the availability of highly accurate,

∗ Corresponding author. Tel.: +1 609 252 3872; fax: +1 609 252 6030.
E-mail address: Litai.zhang@bms.com (L. Zhang).
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ost effective and high throughput screening techniques that
an provide fast and reliable read-outs on the developability
haracteristics of discovery compounds. Such screening tech-
iques can help select compounds with a greater probability of
ucceeding in the clinic and also provide guidance to the medic-
nal chemists in designing better compounds. Thus, the task of
creening discovery compounds for biopharmaceutical proper-
ies (e.g. solubility, intestinal permeability, metabolic stability,
tc.) in a most efficient manner has become a major challenge
acing the industry.

Despite innovations in novel drug delivery systems in the
ecent past, the oral route still remains the preferred route of
dministration by virtue of its convenience and better compli-
nce. For a compound to be developed as a successful oral
edicine it should have sufficient pharmacological potency cou-

led with adequate structural and bio-pharmaceutical attributes
o reach the site of action. Amongst the biopharmaceutical prop-
rties that need to be considered in early discovery, permeability

ssessment and P-glycoprotein (P-gp) interaction studies can be
wo of the most critical properties in determining the fate of

compound (Kim, 2002; Lin, 2003). Transport of drug sub-
tances across the intestinal membrane is a complex and dynamic

mailto:Litai.zhang@bms.com
dx.doi.org/10.1016/j.ijpharm.2007.05.017
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rocess. It includes the passage of compounds across various
unctional pathways in parallel. Passive transport occurs through
he cell membrane of enterocytes (transcellular) or via the tight
unctions between the enterocytes (paracellular). Various influx
nd efflux mechanisms (via carriers and transporters) play a key
ole in the disposition and efficacy of the compound. A drug
fflux transporter such as P-gp is known to be a major determi-
ant of absorption, distribution and elimination of a wide variety
f drugs (Polli et al., 1999; Matheny et al., 2001; Sababi et al.,
001; Lin, 2003; Lin and Yamazaki, 2003) P-g p is known to
imit the oral absorption of drugs such as cyclosporin and taxol;
t can limit entry of drugs such as HIV protease inhibitors into
rain/CNS; and it can actively facilitate excretion of drugs via
iliary and urinary routes. Since P-gp interactions of a drug
an play such a pivotal role in dictating their pharmacokinetics,
ncreasing efforts are being made in early discovery and devel-
pment to identify compounds that can potentially interact with
-gp.

There are literature reports of various in vitro and in vivo
odels that are used for assessing P-gp interactions with test

ompounds (Adachi et al., 2001; Polli et al., 2001; Yamazaki
t al., 2001; Perloff et al., 2003; Balimane et al., 2006).
n vitro assays such as ATPase assay, rhoadmine-123 uptake
ssay, calcein AM uptake assay, cell based bi-directional assay,
adio-ligand binding assay along with in vivo models such as
ransgenic (knockout mice) and mutant animal models are most
ommonly used. Several in vitro models, though capable of
igh throughput screening due to automation/miniaturization,
re typically not functional since they provide only binding
otential with P-gp. In vivo animal models, on the other hand,
re more predictive and functional in nature but are not practi-
al because of their high cost and limited throughput. Because
f these limitations, the cell based bi-directional permeability
ssays are currently the method of choice for P-gp substrate
dentification in drug discovery labs (Polli et al., 2001; Perloff
t al., 2003; Balimane et al., 2004).

Concerted efforts by several investigators (Seelig, 1998;
kins et al., 2002; Penzotti et al., 2002; Stouch and
udmundsson, 2002; Gombar et al., 2004; Cianchetta et al.,
005) have resulted in different levels of success with regards
o in silico predictability of P-gp interaction of discovery com-
ounds. Researchers have demonstrated correlations between
hysicochemical properties, molecular weight, polar surface
rea, H-bonding capabilities and the compounds propensity to
nteract with P-gp (Wang et al., 2003; Gombar et al., 2004;
ue et al., 2004; Wang et al., 2005). Development of a suc-

essful in silico model that could accurately predict whether or
ot a discovery compound will interact with efflux transporters
P-gp and or other’s) as a substrate can significantly enhance
rug discovery efforts. It would provide valuable insights into
ntestinal absorption, tissue distribution, brain penetration and
iver/biliary elimination of test compounds. These criteria can
ertainly help select the optimal compounds for development

nd save tremendous amount of resources and cost.

This paper describes the development and validation of an
n silico classification model for efflux based on in vitro bi-
irectional Caco-2 cell permeability, using 14 marketed drugs

a
a
a
a
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nd >100 discovery compounds synthesized at Bristol-Myers
quibb PRI.

. Materials and methods

Caco-2 cells (passage #17) were obtained from the American
ype Culture Collection (Rockville, MD). Dulbecco’s modi-
ed eagle’s medium, non-essential amino acids, l-glutamine
nd antibiotics were purchased from JHR Biosciences (Lenexa,
S). Fetal bovine serum was obtained from Hyclone Lab. Inc.

Logan, Utah). HTS-Transwell® inserts (surface area: 0.33 cm2

or 24 well) with a polycarbonate membrane (0.4 �m pore
ize) were purchased from Costar (Cambridge, MA). Hank’s
alanced salt solution (HBSS) and N-2-hydroxyethylpiperazine-
′-2-ethanesulfonic acid (HEPES) were purchased from Sigma
hemical Co. (St. Louis, MO). All solvents were analytical
rade. 3H-Digoxin, 14C Mannitol and 14C Taxol were obtained
rom Perkin Elmer Life Sciences (Boston, MA). All other test
ompounds were obtained from Sigma Chemical Co. (St. Louis,
O).

.1. Caco-2 cell culture procedure

Caco-2 cells were seeded onto filter membrane at a den-
ity of ∼100,000 cells/cm2. The cells were grown in culture
edium consisting of Dulbecco’s modified Eagle’s medium sup-

lemented with 10% fetal bovine serum, 1% non-essential amino
cids, 1% l-glutamine, 100 U/mL penicillin-G, and 100 �g/mL
treptomycin. The culture medium was replaced every 2 days
nd the cells were maintained at 37 ◦C, 95% relative humid-
ty, and 5% CO2. Permeability studies were conducted with
he monolayers cultured for approximately 21 days with the
ell passage numbers between 50 and 80. Physiologically and
orphologically well-developed Caco-2 cell monolayers with
EER values greater than 400 ohm × cm2 were used for the
tudies reported in this manuscript. Radiolabeled mannitol was
sed as a control to insure the integrity of cell monolayer in all
ermeability experiments.

.2. Caco-2 cell bi-directional efflux substrate assay

The transport medium used for the bi-directional studies was
odified HBSS buffer containing 10 mM HEPES. The pH of

oth the apical and basolateral compartments was 7.4. Prior to all
xperiments, each monolayer was washed twice with buffer and
rans-Epithelial Electrical Resistance (TEER) was measured to
nsure the integrity of the monolayers. The concentration of test
ompounds was typically 50 �M in this assay. The bi-directional
ermeability studies were initiated by adding an appropriate vol-
me of buffer containing test compound to either the apical (for
pical to basolateral transport; A to B) or basolateral (for baso-
ateral to apical transport; B to A) side of the monolayer. Volume
f the apical and basolateral compartment was maintained at 0.2

nd 0.6 mL, respectively. The monolayers were then placed in
n incubator for 2 h at 37 ◦C. Samples were taken from both the
pical and basolateral compartment at the end of the 2 h period
nd the concentrations of test compound were analyzed by a
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PLC-UV assay. Permeability coefficient (Pc) was calculated
ccording to the following equation:

c = dA

dtSCo
,

here Pc is permeability in nm/s, dA/dt the flux of the test com-
ound across the monolayer (nmole/s), S the surface area of the
ell monolayer, and Co is the initial concentration (50 �M or
easured starting concentration) in the donor compartment.
Caco-2 cells were used for developing this in silico model

ince it is the most widely used cell line in the pharmaceuti-
al industry for the last 2 decades. Regulatory agency (FDA,
006) as well as several investigators have supported the use of
aco-2 for performing efflux studies since they have adequate
xpression of several efflux transporter proteins. Caco-2 cells
re known to express several efflux transporters such as P-gp,
reast cancer resistance protein (BCRP), multi-drug resistance
rotein (MRP2), etc. (Taipalensuu et al., 2001; Englund et al.,
006; Seithel et al., 2006) Thus, the bi-directional permeability
tudies in Caco-2 cells is used to identify overall efflux substrates

ather than solely P-gp substrates. A compound was considered
o be an efflux substrate if the ratio of its apparent permeability
n the B to A direction to that in the A to B direction was >2.
t was considered to be a non-substrate if the ratio was ≤2. A

r
i
c
m

Fig. 1. Expanded rule o
Pharmaceutics 343 (2007) 98–105

ut-off value of 2 was selected based on the historical dataset
ithin our labs as well as guidance from the literature (Polli et

l., 2001). All data used for the in silico modeling were from
tudies performed in triplicate with mass balance of >60% in
oth directions. Mannitol (paracellular probe) and digoxin (clas-
ical P-gp substrate) were included as quality controls in every
est run to confirm the performance of the Caco-2 cells with
espect to the integrity of cell monolayer and efflux transporter
unctionality.

.3. In silico model development

After omitting compounds that had recovery (mass bal-
nce) less than 60% in either the A to B or B to A Caco-2
ell permeability assays, 113 substrates and 58 non-substrates
ere available for constructing the model for efflux substrate

ecognition. Selecting compounds with adequate recovery was
ritical to insure that only the high quality data with minimum
on-specific binding were incorporated in the model develop-
ent. A total of 157 compounds were selected from 23 internal
esearch programs in 10 different therapeutic areas. The remain-
ng 14 compounds were marketed drugs representing a diverse
hemical space with a wide range of physicochemical and phar-
acological properties. The physicochemical properties of the

f five parameters.
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71 structures are depicted in Fig. 1 as an extended rule of five
Lipinski et al., 1997).

SMILES notation of 171 compounds were converted to 3D
tructures using Cerius2 (Accelrys, Inc., San Diego, CA), then
inimized using the Merck Molecular Force Field (MMFF) in
aestro (Schrodinger, LLC, New York). The energy minimized

tructures were stored in an SD file format then imported into a
erius2 study Table. Ninety-nine 2D and 3D structural descrip-

ors were initially computed for the training and validation sets.
hese included Cerius2 spatial, electro-topological, and physic-
chemical parameters, various fragment keys based on Alogp
tom types. Eighty-nine descriptors were used to build classi-
cation trees after disregarding descriptors with zero variance.
air-wise correlations were performed to ensure the orthogonal-

ty of descriptors used for the final model.
To ensure uniform coverage of substrates and non-substrates

n both training and validation sets, the 113 substrates and 58
on-substrates were clustered separately using Daylight finger-
rints with group average clustering and a Tanimoto similarity
oefficient of 0.8. There were 66 substrates clusters, 46 of
he 66 were singletons, the average number of compounds for
he rest 19 clusters was 3 except the first cluster which con-
isted 26 compounds. There were 39 non-substrates clusters,
9 of the 39 were singletons, the average number of com-
ounds for the rest 10 clusters was 3. Twenty compounds were
elected randomly from the first cluster of the substrates to
epresent this cluster. The training set was made of those 20
ompounds plus cluster centers of both substrates and non-
ubstrates; the rest of the compounds were designated as the
alidation set. In total 125 compounds were used for train-
ng the model and 46 compounds were used for validating the

odel.
The recursive partitioning (RP) method (Breiman et al., 1984;

awkins et al., 1997; van Rhee et al., 2000; Mazzatorta et al.,
004) implemented in Cerius2 was used to develop and validate
classification tree to separate substrates from non-substrates.
he RP method recursively partitions data according to a rela-

ionship between the X and Y values, creating a tree of partitions.
t finds a set of cuts or groupings of X values that best predict a
value. It does this by exhaustively searching all possible cuts

r groupings. These splits (or partitions) of the data are done
ecursively forming a tree of decision rules until the desired

t is reached. RP parameters have to be optimized to build a
alanced tree predicting both classes in the training set evenly.
he parameters listed in Table 1 were used for the final RP
odel.

able 1
arameters used for the final recursive partitioning model

ame of Parameters Values

ype of weighting Classes
core splits Gini impurity
runing factor 3
inimum number of samples per node 6

imit knots per variable 40
aximum Lookahead node 0
aximum tree depth 10

i
F

Fig. 2. Decision tree for the training set compounds.

The resulting efflux classification model is based on five
escriptors, and is depicted for the training set in Fig. 2. The
elected features include physicochemical, shape, and atom-type
escriptors. The prediction of validation set is depicted in Fig. 3.
ach split is based on a descriptor value, which partitions com-
ounds in order to separate substrates from non-substrates. For
xample, the first split separates 7 out of 32 non-substrates on the
asis of descriptor Jurs-PPSA-2. This node is a pure node con-
aining only non-substrates. The Jurs-PPSA-2 is the total charge
eighted positive surface area, calculated as:

urs-PPSA-2 ≡
(

Npos∑
i

SAi

)
×
⎛
⎝Npos∑

j

qj

⎞
⎠

here SAi is the solvent-accessible surface area of the ith atom
ith a positive partial charge, qj is the charge on the jth atom
ith a positive partial charge, both summed over all atoms in the
olecule with a partial positive charge. Atype-C-26 is a count

f aromatic carbons bonded to a heteroatom with a single bond.
his carbon is typically partially positive charged. Shadow-
Zfrac is the area of the molecule projected onto the YZ-plane
ivided by the area of the bounding box of the molecule in this
ame plane. The area of the molecule in the YZ plane represents
he minimum aspect ratio of the molecule. Once normalized to
he size of the bounding box, this descriptor essentially deter-

ines the compactness of the molecule in the YZ plane. S aaN
s an electrotopological state key descriptor of a N bonded to two
s for a tertiary N. Histograms of these descriptors are shown in
ig. 4.

Fig. 3. Decision tree for the validation set compounds.
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. Results

As shown in Fig. 2, the resulting RP model resembles a
ree with 6 leaves, or terminal nodes. Only two nodes result
n prediction that a compound is a substrate for efflux.

Based on the model, efflux substrates generally tend to be
lectron deficient (Jurs-PPSA-2 > 1630) and have few substi-
uted phenyl rings (atype-c-26 ≤ 2.5), no more than two aromatic
itrogens (S aaM ≤ 9.01). Additionally, efflux substrates have
ither (1) a sparsely filled minimum aspect ratio (e.g. a com-
ound with significant branching as opposed to a fairly linear
olecule), or (2) at least one tertiary nitrogen. The model also

ighlights compounds with two or more aromatic nitrogens
S aaN > 9.01) as a group with significant number of substrates,
ut with no structural features that clearly identifies them. The
odel suggests that efflux substrates are likely to contain elec-

ron deficient aromatic rings, are likely to be highly branched,
nd most of them contain tertiary nitrogens.

It is worth highlighting that this interpretation is drawn from
he descriptors used in the model as well as the data used to train

nd validate the model. Consequently, the resulting rules may
ave significant limitations that will only become apparent with
ontinued forward application. This future application, however,
ust stay within the confines of the structural descriptors used

k
∼
t
f

Fig. 4. Training set histograms of f
Pharmaceutics 343 (2007) 98–105

n this report. Fig. 4 shows the distributions of the descriptors
f the model. Users should be aware when new compounds are
epresented by descriptors that are outside of these bounds, or
n sparsely populated regions of this descriptor space, as these
xtrapolations are likely to have significant prediction errors.

Figs. 5 and 6 summarize the prediction for the selected
P model for the training and validation sets. This RP model
ased on five descriptors correctly predicted 80% of both non-
ubstrates and substrates from a training set of 125 compounds.
iewed another way, 89% (67 of 75) of the compounds pre-
icted to be substrates by the model were actually substrates.
nly 64% (32 of 50) of the compounds predicted to be non-

ubstrates were actually non-substrates. This difference may
ave ramifications in how the model should be applied in real
ime. Specifically, the model appears to identify substrates more
eliably than non-substrates.

For a validation set of 46 compounds, 72% of non-substrates
nd 89% of substrates were correctly predicted with this model.
ll 14 marketed drugs are predicted correctly by the model.
he experimental and predicted classifications of the 14 mar-

eted drugs are listed in Table 2. Higher predictability of
89% observed for predicting the efflux substrates in con-

rast to lower (though, quite acceptable) predictability of ∼72%
or non-substrates of the validation set can be explained by

eatures used in efflux model.
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Table 2
Experimental and predicted classification of marketed drugs

Drugs Experimental Predicted

Digoxin Substrate Substrate
Etoposidea Non-substrate Non-substrate
Indinavir Substrate Substrate
Indomethacin Non-substrate Non-substrate
Mannitol Non-substrate Non-substrate
Methotrexate Non-substrate Non-substrate
Metoprolol Non-substrate Non-substrate
Probenecid Non-substrate Non-substrate
Rhodamine 123 Substrate Substrate
Dexamethasone Substrate Substrate
Taxol Substrate Substrate
Verapamil Non-substrate Non-substrate
Vincristine Substrate Substrate
Vinblastine Substrate Substrate

n

v
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e
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f
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Fig. 5. Confusion matrix for the training set.

he nature of the in vitro data used to develop the in silico
odel.
There are some special scenarios under which there is a pos-

ibility that compounds that are efflux/P-gp substrates might get
rroneously identified as non-substrates by the in vitro assay.
irst, P-gp is a transporter protein that can be saturated and for
igh affinity (low Km) compounds, the efflux transport could be
ver-whelmed at study concentrations (50 �M) falsely identi-
ying a compound as a non-substrate. Second, test compounds
hat are completely impermeable (transcellular passive perme-
bility is negligible) often demonstrate baseline permeability in
oth directions (efflux ratio would be ∼1) but they cannot be
onclusively classified to be non-substrates. Third, compounds
ith very high intrinsic permeability (passive permeability value
igh in both direction) might again demonstrate efflux ratio
ower than 2 despite being efflux/P-gp substrates. Thus, the
lightly lower predictability observed in accurately identify-
ng the non-substrates might be a function of the quality of
xperimental data rather than the caliber of the in silico model.
erapamil, a known efflux/P-gp susbtrates, is listed as a non-
ubstrate via both experimental and predicted mode in Table 2.
ince the Caco-2 cell studies were all performed with test com-

ounds at 50 �M, verapamil, a high permeability compound,
aturates the efflux transporters leading to a high Pc value in
oth direction resulting in a net efflux ratio of ∼1. Under opti-
ized conditions (starting concentrations in single digit �M)

Fig. 6. Confusion matrix for the validation set.
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a Etoposide demonstrated an efflux ratio of ∼1.5 and was considered to be a
on-substrate (since ratio was <2).

erapamil would demonstrate a net efflux ratio of greater than
and would be labeled as a substrate. However, under present

xperimental conditions, it gets identified as a non-substrate.
ince the objective of this paper was to develop a practical in
ilico model based on data that are normally going to be available
n research settings, we have considered permeability data only
rom 50 �M and not preferentially selected any data at lower
oncentrations.

An important consideration in model development is an
nderstanding of the variability of the data being used to con-
truct the model. The experimental error may lead to incorrect
ategorization of compounds in the training set. Historical data
rom this assay have demonstrated that variability of data from
he bidirectional Caco-2 cell experiment used here is generally
etween 2 and 5 fold, with compounds showing higher ratio hav-
ng variability in the higher end of that range. These projected
rror rates were used in a Monte Carlo simulation to gauge the
ffect of the quality of the data used to derive the in silico model.
he data were perturbed by a normal distribution of error, within
n error rate based on the Caco-2 cell B-A/A-B ratio. The per-
urbed data was then used to classify compounds as substrates
r non-substrates. The agreement between the categorization
sing the experimental values and the categorization using the
erturbed data is calculated. This process was repeated for 1000
terations, building a distribution of correlations. This process
esults in the cumulative distribution plot shown in Fig. 7 that
ndicates the median percent agreement ∼85% based on the
xpected error. This value is likely the upper bound on the per-
ormance of an in silico model. Indeed, it is probably overly
ptimistic as it does not account for the atypical errors of greater
han 20-fold.

When this in silico efflux model was applied to predict a
et of 25 compounds tested after the model was developed, the
verall classification was 84% accuracy. All nine non-substrates

ere predicted to be non-substrates. Of the substrates, 63%
ere correctly predicted as substrates. The model performed

easonably well considering two substrates had subtle structure
odifications of non-substrates (CF3 instead of Cl). Addition-
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ig. 7. Monte Carlo simulation results for the maximum correct classification
ased on assay variability.

lly, two other substrates were structurally very dissimilar to
he training data used to develop the efflux model as indicated
y the fact that the most similar training set compounds had a
animoto similarity coefficient of less than 0.5. Another pre-
iction was performed with 115 newly tested compounds, 75%
ubstrates were predicted as substrates, 72% non-substrates pre-
icted as non-substrates. These predictions show the generality
f the model to predict substrates/non-substrates. The failure
o predict subtle structure changes of a particular chemotype
ndicated that the model should not be used as a local model
or structural modifications. The model should be used in the
arly stage of drug discovery to screen compounds for efflux
ubstrates.

. Discussion

Due to the variety of modeling techniques, and datasets
mployed, comparing the model described here with others
resented in the literature is a difficult task. The approach
e have described here focuses on a combination of physico-

hemical properties (PPSA-2), shape (SHDW-YZfrac), and
harmacophoric atom types (atype-C-26, S aaN, S sssN). The
pproach employed by Cianchetta et al. (2005) de-emphasized
he significance of diffusion related physicochemical properties,
robably because the dataset excluded compounds shown to be
on-substrates in the bidirectional Caco-2 cell assay. Instead,
hey focused only on compounds with a B-A/A-B permeability
atio in Caco-2 cells greater than 1 which may have significantly
educed the impact on diffusion related considerations. Ekins et
l. (2002) derived a substrate pharmacophore from an overlay
f two known substrates, upon which they overlayed a third
ompound to match. Xue et al. (2004) employ a support vec-
or machine in their modeling. Several of the descriptors they

ighlight are similar to those presented here. However, the coef-
cients are not disclosed, making it impossible to interpret the
egree to which a descriptor makes it more/less likely to be a
fflux/P-gp substrate.

F

G

Pharmaceutics 343 (2007) 98–105

. Conclusions

A highly predictive in silico model based on experimental
ata and five descriptors capable of assessing the efflux substrate
P-gp and or other’s) potential of discovery compounds was
eveloped and validated. The model highlights important struc-
ural features for efflux substrate recognition. The predictive in
ilico model developed here affords a primary screening tool
or discovery scientists to identify potential efflux substrates.

ith the increased understanding of the critical role played by
arious transporter proteins in affecting the pharmacokinetics
f test compounds, there has been a renewed focus to identify
rug-transporter interactions as early as possible in discovery
ycle. In vitro cell-based models to identify efflux substrates
re routinely utilized by discovery organizations but the cell-
ased assays require valuable resources, time, and cost (Marino
t al., 2005). Additionally, the cell-based models often lack the
igh-throughput potential that is essential to effectively provide
imely feedback to synthesis groups for Structure Activity Rela-
ionship (SAR) efforts. Utilization of a predictive in silico model
s a “primary” screening tool can be invaluable in providing
uidance to medicinal chemistry groups regarding the efflux
nteraction potential of novel compounds. Such efforts can guide
he chemotypes away from potential efflux substrates and help
ead the compound libraries towards more “developable” char-
cteristics. Thus, in silico models such as the one discussed in
his manuscript can be used effectively as a primary filter for
ibrary design and screening discovery compounds for efflux
nteraction potential.
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